

Zero touch photonics

Combining the flexibility of TDM networks with the cost efficiency of WDM

András Kalmár Péter Barta 15. April, 2009 - Szeged

Outline

Drivers

Flexibility and transparency benefits

- Tunable ROADM (Reconfigurable Optical Add/Drop Multiplexer)
- N-Degree T-ROADMs (N-Directions)
- Optical resilience and restoration

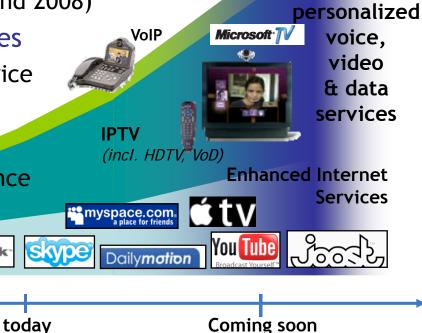
System scalability

System automation

Transformation Drivers for Photonic Networks

New services (and new players) are emerging, requesting huge bandwidth growth in photonic networks

- Fixed and mobile, personalized
- Increased popularity of new Video and Internet applications (> 6 x growth between 2004 and 2008)


Service providers are facing new challenges

- React faster, providing better time-to-service
 - ☐ Higher flexibility and capacity
- Control costs
 - ☐ Highly automated operations and resilience

2005

iTunes

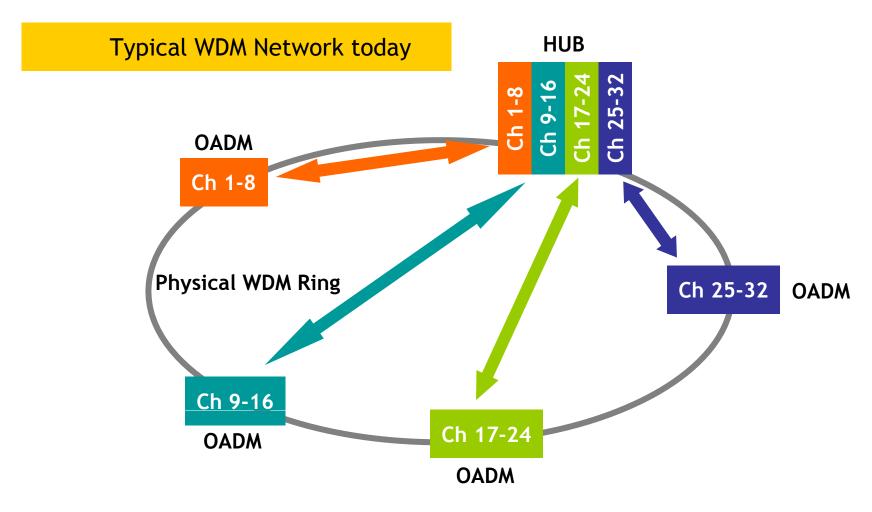
bundle

More

Networkshop

XVIII. SZEGED

Bandwidth


Blended,

Movielink^a

2000

Static Networks Based on fixed Wavelength filters

Static Networks Based on fixed Wavelength filters

- Topology and capacity/node determined at time of network design
 - □ Traffic projection based upon best estimates at the time
 - □ Frequent changes even during design/bid/deployment
 - □ Not always cost effective to modify the system
- Can lead to premature system exhaust
 - □ Expected system life time: 5 10 years
 - □ No accurate traffic projections available for such a long period
 - Insufficient No. of wavelengths available to hot spots
 - Unlit wavelengths to cold spots cannot be utilized
- Topology is inconsistent for emerging applications
 - □ Telephony, SAN, Enterprise, VoIP topologies looks different

Transforming WDM Networks

Zero-Touch Transparent Photonic Networks

Eliminates need to forecast traffic

Performance

Eliminates regeneration points

Automation

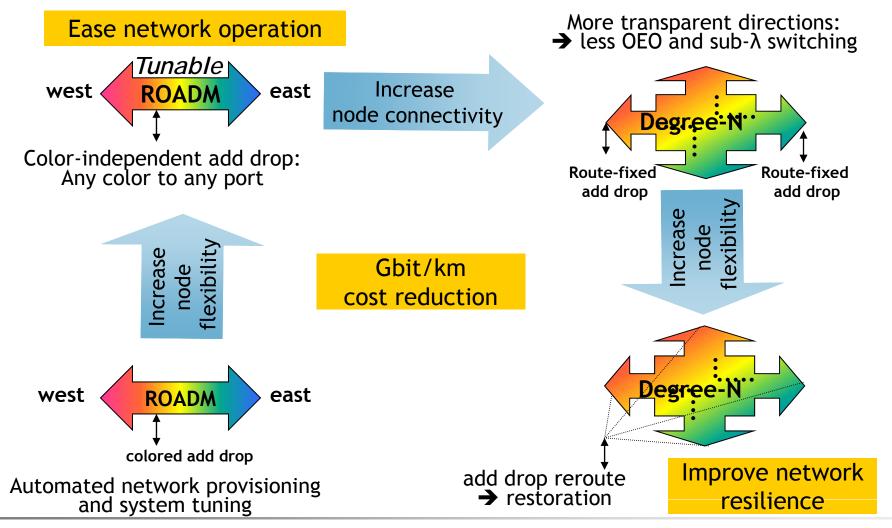
Eliminates manual intervention

on Integration

Eliminates multiple equipment

ROADM, tunable lasers and filters, ...

Multi-degree, Gain Equalization, New modulation formats, 40G/100G, Raman, ... Auto power adjust., GMPLS/ASON restoration, OTH, smart photonic manager, ... C+DWDM, multireach, GE ADM, L2 switching, ...

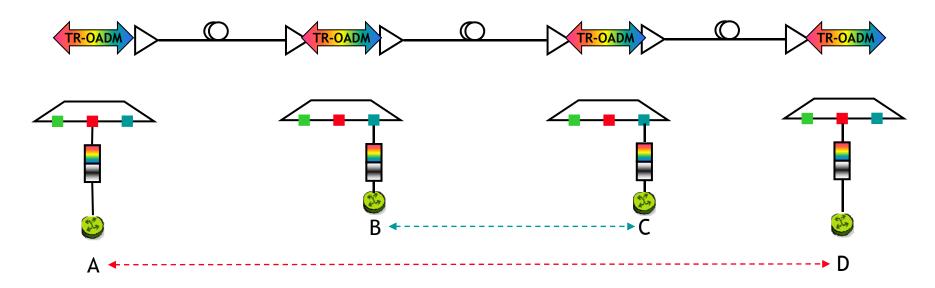

- True Networking
- Wavelength management and switching
- OAM and Survivability
- Reduced TCO
- Improved time-to-service

Zero-Touch Transparent Photonic Networks transform WDM into true transport networking for simplified and accelerated operations

Flexibility: a key enabler

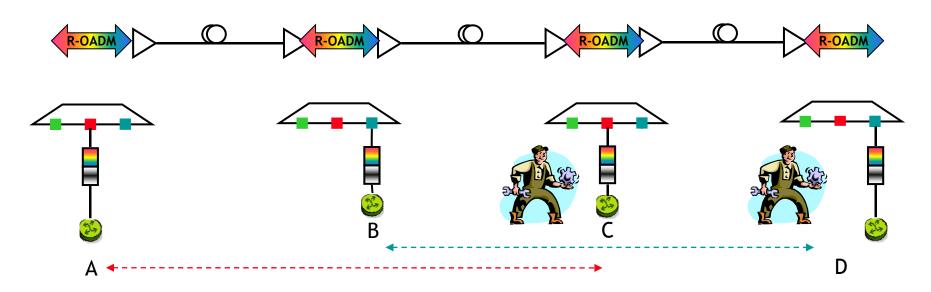
T&R-OADM: value proposition

Benefits of the Tuneable add-drop functionality:


- 1. Set-up or re-engineer a circuit within minutes
 - □ Non-tuneable ROADMs avoids intervention at intermediate sites, but still require intervention at circuits endpoints
 - ☐ Tuneable architectures remove intervention at circuits endpoints (provided that transponders are available)

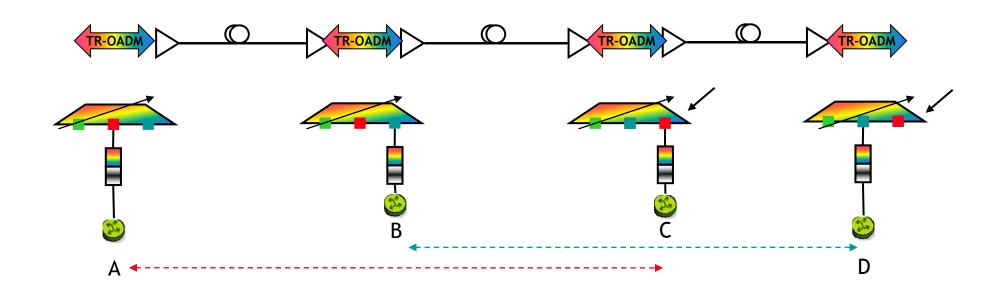
The need: re-engineering a circuit

Initial link set-up: existing circuits A-D and B-C



New need: change circuits to A-C, B-D

Standard approach: non-tuneable ROADM


Non-Tuneable ROADM architecture:

- Go to site D, and change transponder cabling
- Go to site C, and change transponder cabling
- Activate new service

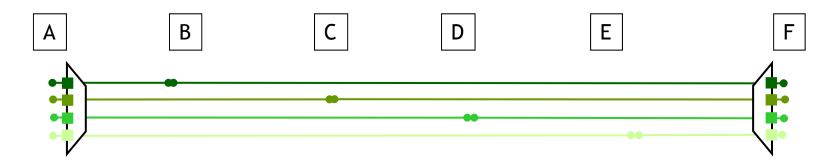
Tuneable ROADM: re-engineering a circuit within minutes

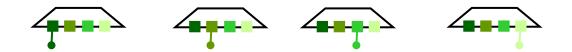
Tuneable ROADM architecture:

Just re-program your DEMUX ports, no site intervention needed!

T&R-OADM: value proposition

Benefits

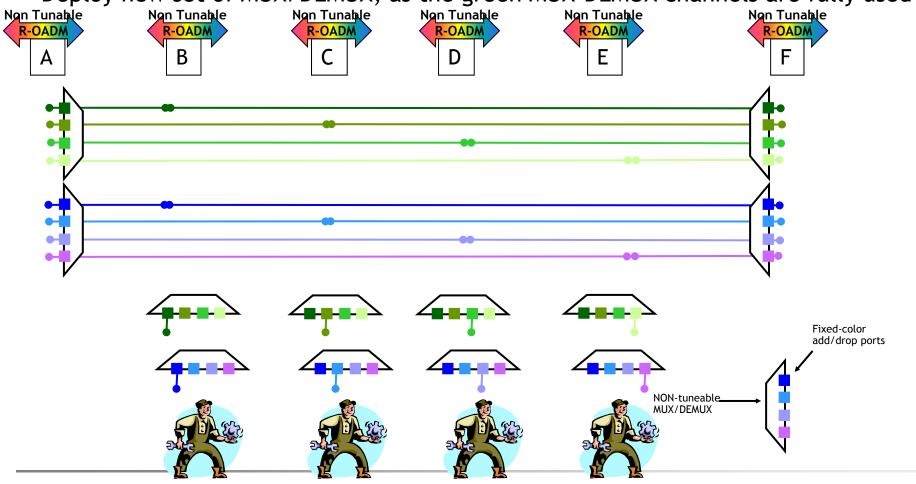

- 1. Set-up or re-engineer a circuit within minutes
 - □ Non tuneable architectures avoid intervention at intermediate sites, but require still intervention at circuits endpoints
 - ☐ Tuneable architectures allow to avoid intervention at circuits endpoints (provided that transponders are available)
- 2. Make channel planning unnecessary
 - ☐ All items are "colorless", i.e. not associated to a specific wavelength



Initial traffic plan:

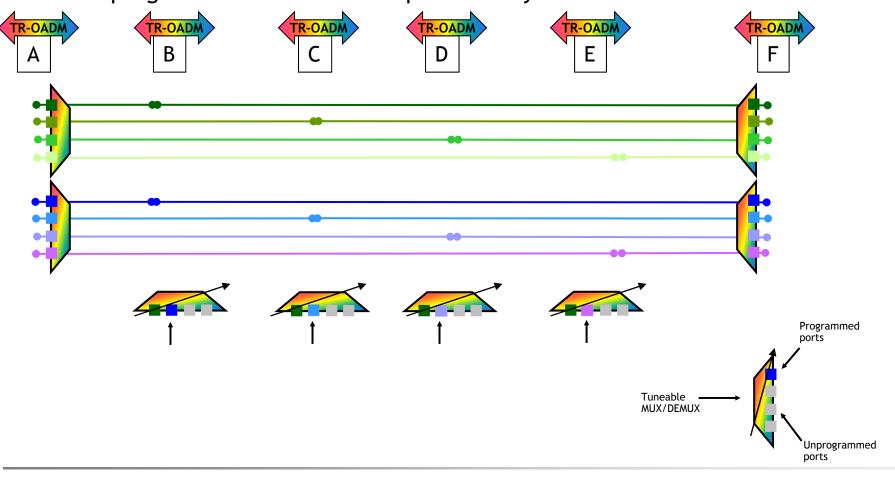
Dual homed traffic matrix with minimum frequency usage

New need:


■ Install a new service A-B and B-F, A-C and C-F...

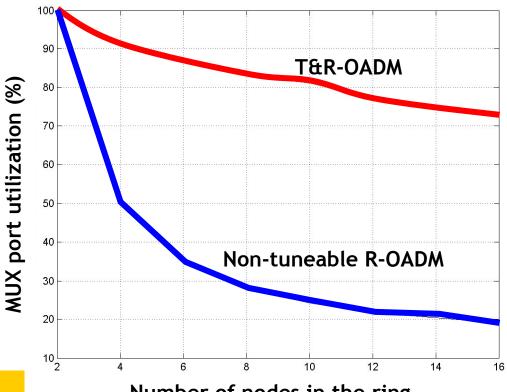
Non-tuneable ROADM:

Deploy new set of MUX/DEMUX, as the green MUX-DEMUX channels are fully used



Tuneable ROADM:

Just re-program the tuneable MUX ports to any color in the C+ band


Simulation:

- Ring network
- Any-to-any traffic: Random traffic evolution, from 1 to max capacity,
- New channel assignment decided at each step without any knowledge of the future demands

Graph:

- X-axis: # of nodes in the ring
- Y-axis: MUX port utilization in %, at full-channel loading

T&R-OADM up to 3.5 times more efficient than non-tuneable R-OADM!

Number of nodes in the ring

T&R-OADM: value proposition

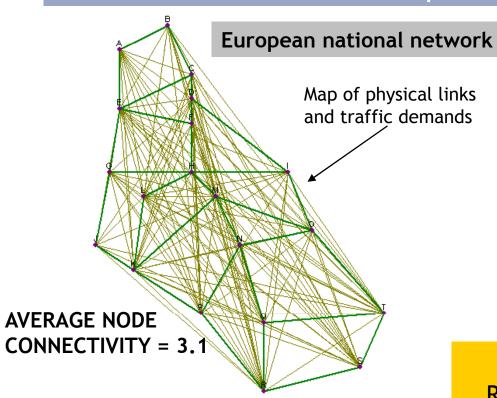
Benefits

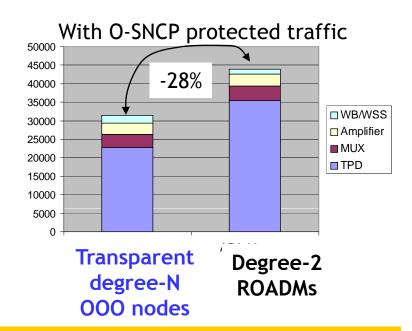
1.	Set-up or re-engineer a circuit within minutes
	□ Non tuneable architectures avoid intervention at intermediate sites, but require still intervention at circuits endpoints
	☐ Tuneable architectures allow to avoid intervention at circuits endpoints (provided that transponders are available)
2.	. Make channel planning unnecessary
	\square All items are "colorless", i.e. not associated to a specific wavelength
3.	Dramatically simplify logistics
	☐ Reduce the lead-time to define an order (no longer any need to check the installed base)

Eliminate possibilities of errors when ordering new items

Simplify and optimize spares management

(wrong transponders and MUX colors is a typical cause of errors)



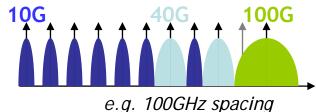

CAPEX benefits:

Degree-N transparency

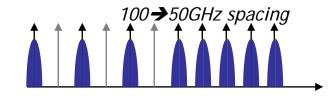
Network studies show -30% CAPEX savings with Transparent OOO nodes

Remove external nodes (e.g. SDH, Routers,..) for Ring Interconnections

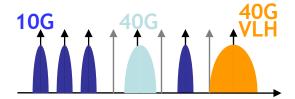
Source: Alcatel-Lucent study


Scalability

Future-Proof Photonics Networks



Flexible photonic networks must support


Upgrade to higher bit rate per channel

- Upgrade to higher channel count
 - □Add more 10G channels in the remaining spectrum
 - ☐ Improve spectral efficiency, save fiber back-up capacity

- Upgrade with broader channels
 - □ Variety of modulation formats for reach diversity

WSS technologies supporting variable channel bandwidth and spacing are key for the evolution path of photonic networks

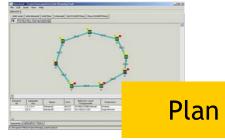
Scalability: 100 Gigabit Ethernet transport

Moving to 100GE is to increase capacity, so

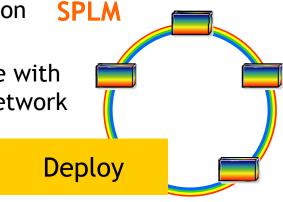
- →Link capacity needs to be increased accordingly*
- → In core networks, scalability of fiber links clearly advocate for higher spectrum efficiency and single wavelength solution with sophisticated modulation format.
- Historically at 2.5G, typ. 32ch: 0.025 b/s/Hz (100 GHz)
- Typ. now at 10G: 0.2 b/s/Hz (50 GHz grid)
- Typ. now at 40G: 0.8 b/s/Hz (50 GHz grid)
- Target for 100G: spectral efficiency at least comparable:
 - 1b/s/Hz on 100GHz grid = 40 channels = 4 Tbit/s link capacity

Status:

- Substantial market interest for 100G
- Alcatel-Lucent Technology leadership including standards development


*Reminder: today's typical link capacity is ~1 Tbit/s (100x10G)

Integrated Alcatel Solution: Greater intelligence, Accelerated deployments



Link Planning Tool

Equipment configuration automatically generated

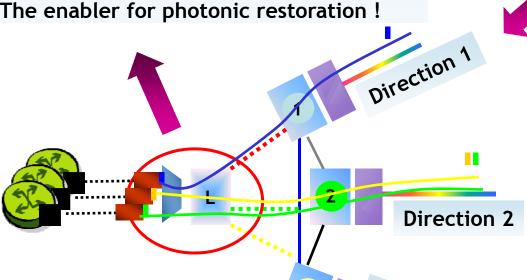
User-friendly interface with graphical views of the network

■ Current configuration is imported to LPT to support upgrade of existing design

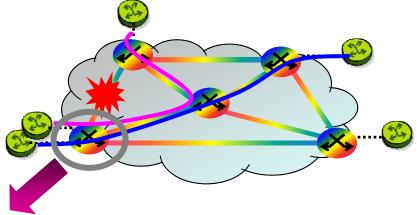
Validated network design exported to NMS

The next step:

Wavelength rerouting to increase the overall network reliability with T&ROADM:



Local OTS Port:


Towards photonic transparent networks

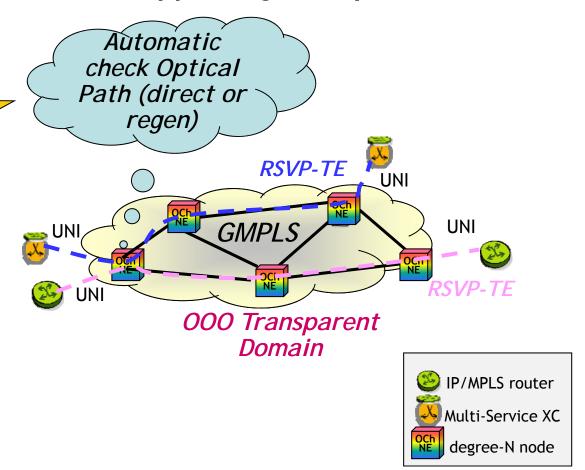
The local OTS ports represents the ultimate flexibility:

- •local add/drop traffic is not dependent on any specific direction
- Paths can be provisioned in the photonic domain
- •The enabler for photonic restoration!

pool of regenerator on local OTS port can be accessed dynamically for new connections

Direction 3

Automated photonic layer: GMPLS for fast service setup (BW-on-Demand), restoration...



Switched Connection restoration supporting multiple failures

Source-based restoration mode: photonic routing engine for optical route choice

GMPLS benefits:

- Faster service setup
- Automatic restoration
- High level of resilience
- Good resources usage
- Automated discovery

Products for Tunable ROADM

2007 2008

1696 R-OADM 5.0

- 1-4 Degree T-OADM
- 42 λ 2,5G & 10G
- SDH & GbE TDM
- λ Management
- Transponder less operation (40G)

1850TSS-320 2.0

- 1-8 Degree T-OADM
- 44 λ 2,5G, 10G
- TDM/WDM/Packet Machine
- 10xANY (SDH, GbE)
- OTU-2 (λ tunable)

1626 LM 5.0

- 1-4 Degree T-OADM
- 72 λ 2,5G, 10G & 40G
- Multi Range Platform
- 40G (PBST & DPSK)
- GbE-ADM (L2-PM)

Conclusion

Zero-Touch Transparent Photonic Networks help service providers to:

- Ease operations
 - □Tunable ROADM, to ease commissioning
 - □Flexible nodes, to provision/reconfigure and tune remotely
- Reduce costs
 - □Cost-effective scalable Multi-degree ROADMs enable transparent transits
- Improve network resilience
 - □Photonic restoration
 - □Supporting multiple failures in addition to fast electrical/client protection
- Cap existing, future-proof investments
 - □Photonic switching to support variable grid and channel bandwidth
 - □Future-compatible (40G/100G ready) and backward-compatible

